5.3 Importance of Biodiversity
Importance of Biodiversity
Loss of biodiversity may have reverberating consequences on ecosystems because of the complex interrelations among species. For example, the extinction of one species may cause the extinction of another. Biodiversity is important to the survival and welfare of human populations because it impacts our health and our ability to feed ourselves through agriculture and harvesting populations of wild animals.
Human Health
Many medications are derived from natural chemicals made by diverse organisms. For example, many plants produce compounds meant to protect the plant from insects and other animals that eat them. Some of these compounds also work as human medicines. Contemporary societies that live close to the land often have a broad knowledge of the medicinal uses of plants growing in their area. For centuries in Europe, older knowledge about the medical uses of plants was compiled in herbals—books that identified the plants and their uses. Humans are not the only animals to use plants for medicinal reasons. The other great apes, orangutans, chimpanzees, bonobos, and gorillas have all been observed self-medicating with plants.
Modern pharmaceutical science also recognizes the importance of these plant compounds. Significant medicines derived from plant compounds include aspirin, codeine, digoxin, atropine, and vincristine (Figure 1). Many medications were once derived from plant extracts but are now synthesized. It is estimated that, at one time, 25 percent of modern drugs contained at least one plant extract. That number has probably decreased to about 10 percent as synthetic versions of the plant compounds replace natural plant ingredients. Antibiotics, which are responsible for extraordinary improvements in health and lifespans in developed countries, are compounds largely derived from fungi and bacteria.

In recent years, animal venoms and poisons have excited intense research for their medicinal potential. By 2007, the FDA had approved five drugs based on animal toxins to treat diseases such as hypertension, chronic pain, and diabetes. Another five drugs are undergoing clinical trials, and at least six are being used in other countries. Other toxins under investigation come from mammals, snakes, lizards, various amphibians, fish, snails, octopuses, and scorpions.
Aside from representing billions of dollars in profits, these medications improve people’s lives. Pharmaceutical companies are looking for new natural compounds that can function as medicines. It is estimated that one-third of pharmaceutical research and development is spent on natural compounds. About 35 percent of new drugs brought to market between 1981 and 2002 were from natural compounds.
Finally, it has been argued that humans benefit psychologically from living in a biodiverse world. The chief proponent of this idea is famed entomologist E. O. Wilson. He argues that human evolutionary history has adapted us to living in a natural environment and that built environments generate stresses that affect human health and well-being. There is considerable research into the psychologically regenerative benefits of natural landscapes, suggesting the hypothesis may hold some truth.
Agricultural
Since the beginning of human agriculture, more than 10,000 years ago, human groups have been breeding and selecting crop varieties. This crop diversity matched the cultural diversity of highly subdivided populations of humans. For example, potatoes were domesticated beginning around 7,000 years ago in the central Andes of Peru and Bolivia. The people in this region traditionally lived in relatively isolated settlements separated by mountains. The potatoes grown in that region belong to seven species, and the number of varieties likely is in the thousands. Each variety has been bred to thrive at particular elevations and soil and climate conditions. The diversity is driven by the diverse demands of the dramatic elevation changes, the limited movement of people, and the demands created by crop rotation for different varieties that will do well in different fields.
Potatoes are only one example of agricultural diversity. Every plant, animal, and fungus cultivated by humans has been bred from original wild ancestor species into diverse varieties arising from the demands for food value, adaptation to growing conditions, and resistance to pests. The potato demonstrates a well-known example of the risks of low crop diversity: during the tragic Irish potato famine (1845–1852 AD), the single potato variety grown in Ireland became susceptible to a potato blight—wiping out the crop. The crop loss led to famine, death, and mass emigration. Disease resistance is a chief benefit to maintaining crop biodiversity, and the lack of diversity in contemporary crop species carries similar risks. Seed companies, the source of most crop varieties in developed countries, must continually breed new varieties to keep up with evolving pest organisms. These same seed companies, however, have participated in the decline of the number of varieties available as they focus on selling fewer varieties in more areas of the world, replacing traditional local varieties.
The ability to create new crop varieties relies on the diversity of varieties available and the availability of wild forms related to the crop plant. These wild forms are often the source of new gene variants that can be bred with existing varieties to create varieties with new attributes. Loss of wild species related to a crop will mean the loss of potential for crop improvement. Maintaining the genetic diversity of wild species related to domesticated species ensures our continued food supply.
Since the 1920s, government agriculture departments have maintained seed banks of crop varieties as a way to maintain crop diversity. This system has flaws because, over time, seed varieties are lost through accidents, and there is no way to replace them. In 2008, the Svalbard Global Seed Vault on Spitsbergen Island, Norway (Figure 2) began storing seeds worldwide as a backup system to the regional seed banks. If a regional seed bank stores varieties in Svalbard, losses can be replaced from Svalbard should something happen to the regional seeds. The Svalbard seed vault is deep into the rock of the Arctic island. Conditions within the vault are maintained at ideal temperature and humidity for seed survival. Still, the deep underground location of the vault in the Arctic means that failure of the vault’s systems will not compromise the climatic conditions inside the vault.

Although crops are largely under our control, our ability to grow them depends on the biodiversity of the ecosystems in which they are grown. Crops are grown in soil, and although some agricultural soils are rendered sterile using controversial pesticide treatments, most contain a huge diversity of organisms that maintain nutrient cycles—breaking down organic matter into nutrient compounds that crops need for growth. These organisms also maintain soil texture that affects water and oxygen dynamics, which are necessary for plant growth. Replacing the work of these organisms is not practically possible. These kinds of processes are called ecosystem services. They occur within ecosystems, such as soil ecosystems, due to the diverse metabolic activities of living organisms. Still, they benefit human food production, drinking water availability, and breathable air.
Other key ecosystem services related to food production are plant pollination and crop pest control. It is estimated that honeybee pollination within the United States brings in $1.6 billion annually; other pollinators contribute up to $6.7 billion. Over 150 crops in the United States require pollination to produce. Many honeybee populations are managed by beekeepers who rent out their hives’ services to farmers. Honeybee populations in North America have suffered large losses caused by a syndrome known as colony collapse disorder, a new phenomenon with an unclear cause. Other pollinators include many other bee species and various insects and birds. Loss of these species would make growing crops requiring pollination impossible, increasing dependence on other crops.
Finally, humans compete for their food with crop pests, most of which are insects. Pesticides control these competitors, which are costly and lose their effectiveness over time as pest populations adapt. They also lead to collateral damage by killing non-pest species and beneficial insects like honeybees and risking the health of agricultural workers and consumers. Moreover, these pesticides may migrate from the fields where they are applied and damage other ecosystems like streams, lakes, and even the ocean. Ecologists believe that predators and parasites of those pests actually do the bulk of the work in removing pests, but the impact has not been well studied. A review article found that 74 percent of studies that looked for an effect of landscape complexity (forests and fallow fields near crop fields) on natural enemies of pests, the greater the complexity, the greater the effect of pest-suppressing organisms. Another experimental study found that introducing multiple enemies of pea aphids (an important alfalfa pest) significantly increased alfalfa yield. This study shows that a diversity of enemies is more effective at controlling than one single enemy. Loss of diversity in pest enemies will inevitably make growing food more difficult and costly. The world’s growing human population faces significant challenges in the increasing costs and other difficulties associated with producing food.
Wild Food Sources
In addition to growing crops and raising food animals, humans obtain food resources from wild populations, primarily wild fish populations. For about one billion people, aquatic resources provide the main source of animal protein. But since 1990, production from global fisheries has declined. Despite considerable effort, few fisheries on Earth have managed sustainability.
Fishery extinctions rarely lead to the complete extinction of the harvested species but rather to a radical restructuring of the marine ecosystem in which a dominant species is so over-harvested that it becomes a minor player, ecologically. In addition to humans losing the food source, these alterations affect many other species in difficult or impossible ways to predict. The collapse of fisheries has dramatic and long-lasting effects on local human populations that work in the fishery. In addition, losing an inexpensive protein source to populations that cannot afford to replace it will increase the cost of living and limit societies in other ways. In general, the fish taken from fisheries have shifted to smaller species, and the larger species are overfished. The ultimate outcome could clearly be the loss of aquatic systems as food sources.
Visit this website (http://openstaxcollege.org/l/decliningfish2) to view a brief video discussing a study of declining fisheries.
Attribution:
This section is cloned from Introduction to Environmental Sciences and Sustainability, by Emily P. Harris, University of West Florida, published using Pressbooks, under a CC BY (Attribution) license. It may differ from the original.